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Our Problem: How to construct a portfolio of teams for a DFS contest.

'f'anVwzl 
ONE-DAY FANTASY SPORTS LEAGUES 

Motivation 
‹ Daily fantasy sports (DFS) a multi-billion dollar industry 

‹ Millions of annual users 

‹ Approx $3.3 billion in entry fees in 2017 in U.S. 

‹ DraftKings and FanDuel represent approx 97% of U.S. market 
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‹ Decision

‹ Choose a team w > {0,1}P of athletes.

‹ w >W must satisfy budget, diversity, position constraints etc.

‹ Our points total: F �=wŠδδδ.

‹ Can submit up to N teams.

‹ Opponents

‹ O DFS opponents (O � 1 to 500,000).

‹ Opponents’ entries: Wop �= {wo}
O
o=1. (Uncertainty #2)

‹ Opponents’ points total: Go �=wŠ
oδδδ.

δδ

Preliminaries 
‹ Athletes 

‹ P real-world athletes (P � 100 to 500 in a given DFS contest). 

‹ Athletes performance denoted by δ > RP . (Uncertainty #1) 

4 



‹ Opponents

‹ O DFS opponents (O � 1 to 500,000).

‹ Opponents’ entries: Wop �= {wo}
O
o=1. (Uncertainty #2)

‹ Opponents’ points total: Go �=wŠ
oδδδ.

δδ

δδ

Preliminaries 
‹ Athletes 

‹ P real-world athletes (P � 100 to 500 in a given DFS contest). 

‹ Athletes performance denoted by δ > RP . (Uncertainty #1) 

‹ Decision 
‹ Choose a team w > {0, 1}P of athletes. 

‹ w > W must satisfy budget, diversity, position constraints etc. 

‹ Our points total: F �= wŠδ. 

‹ Can submit up to N teams. 

4 



δδ

δδ

δδ

Preliminaries 
‹ Athletes 

‹ P real-world athletes (P � 100 to 500 in a given DFS contest). 

‹ Athletes performance denoted by δ > RP . (Uncertainty #1) 

‹ Decision 
‹ Choose a team w > {0, 1}P of athletes. 

‹ w > W must satisfy budget, diversity, position constraints etc. 

‹ Our points total: F �= wŠδ. 

‹ Can submit up to N teams. 

‹ Opponents 
‹ O DFS opponents (O � 1 to 500, 000). 

‹ Opponents’ entries: Wop �= {wo}o
O 
=1. (Uncertainty #2)
Š 

‹ Opponents’ points total: Go �= w δ.o 

4 



Top-Heavy

‹ Top few ranks win R1, next few ranks win R2 < R1, and so on.

‹ R1 could be as high as $1m.

Reward Structures 
Double-Up 

‹ Top r% of teams each earn a payoff of R dollars. 

‹ All other teams receive 0. 
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Double-Up Formulation:

max
w>W

P

¢̈
¨̈
¨
¦
¨̈
¨̈
¤

wŠδδδ
±

our fantasy points

> G(r)(Wop, δδδ)
´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶

stochastic benchmark

£̈
¨̈
¨
§
¨̈
¨̈
¥

Top-Heavy Formulation:

max
w>W

D

Q
d=1

Rd PıwŠδδδ > G(r
œ
d)(Wop, δδδ)�

where the Rd’s are decreasing in d.

δδ

Problem Formulations When N = 1 
Denote by G(r) the rth percentile of {Go}

O 
o=1. 

‹ G(r) is the stochastic benchmark we need to beat in double-up contest. 

‹ Depends on both δ and Wop. 
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Our contributions

‹ Model exact payoff structure of contest.

‹ Model DFS opponents behavior leading to Dirichlet regressions.

‹ Connect to mean-variance theory on outperforming stochastic benchmarks.

‹ Optimal mean / variance trade-off determined via sequence of binary
quadratic programs.

‹ Portfolio constructed via greedy algorithm motivated by parimutuel betting.

‹ Estimate value of insider trading and collusion.

Related Work & Contributions 
Hunter, Vielma, Zaman (2016) 

‹ Only consider winner-takes-all payoff structure. 

‹ Propose a greedy MIP formulation to construct portfolio of teams 

‹ Each team targeted to have a high mean and variance 

‹ Teams designed to have low correlation 

‹ Do not consider opponents behavior. 
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The Dirichlet Distribution 
‹ A Dirichlet distribution Dir (α1, . . . , αK ) is a distribution on the 
(K − 1)-dimensional simplex in RK . 

‹ So a draw from Dir (α1, . . . , αK ) yields a probability vector in RK . 

10 



Alpha= II, 1. 1) 
Alpha= f0.2, 0.2, 0.2) 

Alpha = 15.0, 5.0, 5.0) 

l0 
l0 

0.8 l0 
0.8 

0.8 z 0.6 
z 0.6 

z 0.6 0.4 
0.4 l 0.4 0.2 
0.2 

0.0 0.2 
0.0 

0.0 

0.0 
0.2 

0.4 
02 0.0 y 06 

0.8 0.6 0.4 . 
l0 l0 l0 0.8 X 

Alpha= [5.0, 1.0. I.OJ 
Alpha= (1.0, 1.0, 0.21 

Alpha= [l.O, 5.0. 0.21 

l0 
l0 

0.8 l0 
0.8 

0.8 z 0.6 
z 0.6 z ., 0.4 

0.4 
0.2 0.4 

0.2 
0.2 00 ,c • 0.0 
0.0 

0.0 
0.2 

0.4 00 
0.2 

04 0.2 0.0 04 
y 0.6 

y 0.6 
0.8 

l.O 0.8 0.6 ~ 
0.8 

l0 

l0 l0 l0 
Six Dirichlet distributions on the 2-dimensional simplex. 

Source: towardsdatascience.com 

https://towardsdatascience.com


‹ QB positional marginal: pQB � Dir (αααQB).

‹ Assume αααQB = exp (XQBβββQB) where XQB a feature matrix

‹ βββQB estimated via Dirichlet regression.

‹ Now easy to generate QBs for Wop as Dirichlet-multinomial.

Other positional marginals obtained similarly so easy to simulate Wop once
some copula chosen.

Positional Marginals & Dirichlet Regression 

Consider QB selection for DFS opponent’s team: 

k 
‹ QB k selected with unknown probability pQB for all k. 

1 2 3 4Brady: pQB Rodgers: pQB Stafford: pQB Wentz: pQB 

12 



‹ Assume αααQB = exp (XQBβββQB) where XQB a feature matrix

‹ βββQB estimated via Dirichlet regression.

‹ Now easy to generate QBs for Wop as Dirichlet-multinomial.

Other positional marginals obtained similarly so easy to simulate Wop once
some copula chosen.

αα

Positional Marginals & Dirichlet Regression 

Consider QB selection for DFS opponent’s team: 

k 
‹ QB k selected with unknown probability pQB for all k. 

1 2 3 4Brady: pQB Rodgers: pQB Stafford: pQB Wentz: pQB 

‹ QB positional marginal: pQB � Dir (αQB ). 

12 



‹ Now easy to generate QBs for Wop as Dirichlet-multinomial.

Other positional marginals obtained similarly so easy to simulate Wop once
some copula chosen.

αα

αα

Positional Marginals & Dirichlet Regression 

Consider QB selection for DFS opponent’s team: 

k 
‹ QB k selected with unknown probability pQB for all k. 

1 2 3 4Brady: pQB Rodgers: pQB Stafford: pQB Wentz: pQB 

‹ QB positional marginal: pQB � Dir (αQB ). 

‹ Assume αQB = exp (XQB ) where XQB a feature matrixβββQB 

‹ βββQB estimated via Dirichlet regression. 

12 



Other positional marginals obtained similarly so easy to simulate Wop once
some copula chosen.

αα

αα

Positional Marginals & Dirichlet Regression 

Consider QB selection for DFS opponent’s team: 

k 
‹ QB k selected with unknown probability pQB for all k. 

1 2 3 4Brady: pQB Rodgers: pQB Stafford: pQB Wentz: pQB 

‹ QB positional marginal: pQB � Dir (αQB ). 

‹ Assume αQB = exp (XQB ) where XQB a feature matrixβββQB 

‹ βββQB estimated via Dirichlet regression. 

‹ Now easy to generate QBs for Wop as Dirichlet-multinomial. 

12 



αα

αα

Positional Marginals & Dirichlet Regression 

Consider QB selection for DFS opponent’s team: 

k 
‹ QB k selected with unknown probability pQB for all k. 

1 2 3 4Brady: pQB Rodgers: pQB Stafford: pQB Wentz: pQB 

‹ QB positional marginal: pQB � Dir (αQB ). 

‹ Assume αQB = exp (XQB ) where XQB a feature matrixβββQB 

‹ βββQB estimated via Dirichlet regression. 

‹ Now easy to generate QBs for Wop as Dirichlet-multinomial. 

Other positional marginals obtained similarly so easy to simulate Wop once 
some copula chosen. 

12 



Realized vs predicted positional marginal pQB for week 10

I ; 

Dirichlet Regression Results 
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‹ When N = 1 the double-up problem

max
w>W

P
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¨
¦
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our fantasy points

> G(r)(Wop, δδδ)
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stochastic benchmark
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¥

can be restated as
max
w>W

P{Yw > 0}

where Yw �=wŠδδδ −G(r).

‹ Adopt a mean-variance approach to solve for w⁄

- follow Morton et al (2003) on outperforming a stochastic benchmark.

Constructing Double-Up Portfolios 
‹ Barring pathological cases, intuitively clear that optimal portfolio of N 
teams is to solve problem with a single entry and replicate N times. 
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5: else
6: for all λ > Λ do
7: wλ = argmax

w>W
ŽµYw + λσ2Yw

ž

8: end for

9: end if

10: λ⁄ = argmax
λ>Λ

P{Ywλ
> 0}

11: return wλ⁄

‹ Algorithm 1 requires solving a series of binary quadratic programs.

‹ Optimal if mean-variance assumption holds.

Algorithm 1 For the Double-Up Problem with N = 1 
1: if §w > W with µYw C 0 then 
2: for all λ > Λ do 
3: wλ = argmax ŽµYw − λσ

2 žYw 
w>W, µYw C0 

4: end for 
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‹ Consider following idealized greedy algorithm.

Algorithm 2 Idealized Greedy Algorithm for Construction of Top-Heavy Portfolio

1: W⁄ = g

2: for all i = 1, . . . ,N do
3: w⁄

i = argmax
w>W

Reward(W⁄ 8w)

4: W⁄ =W⁄ 8 {w⁄
i }

5: end for

6: return W⁄

Constructing Top-Heavy Portfolios 
‹ Easy to adapt Algorithm 1 for top-heavy N = 1 problem. 

‹ But what to do for N > 1? 

18 
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Can show greedy algorithm optimal in this setting.

2. Top-heavy objective is monotone submodular

‹ By Nemhauser et al. (1978) portfolio returned by greedy algorithm
achieves C 63% of true unknown optimal portfolio.

Problem: Cannot find w⁄
i when i > 1.

Support for Idealized Greedy Algorithm 
1. Consider parimutuel betting - a specialized case of a DFS contest where: 

‹ Team (horse) budget = $1 

‹ Every player costs $1 

‹ Exactly one player per team. 

‹ We know probabilities and opponents bets. 

19 
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‹ But also don’t want teams in portfolio competing with each other.

‹ Easy to see in winner-takes-all setting:

‹ Suppose O “small” relative to number of feasible teams.

‹ Why replicate an entry when chances are no-one else has picked it?

‹ Why even pick a “nearby”, i.e. highly correlated, entry?

Conclusion: Want to choose a diversified portfolio of teams where each team’s
fantasy points score has high mean and variance.

Some Observations for General DFS Contest 

‹ Still want to go “long” mean and variance. 
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Results 
‹ Participated at FanDuel during the 2017-18 NFL season. 

‹ Main focus on top-heavy for experiments. 

‹ Benchmark model similar to Hunter, Vielma, and Zaman (2016). 

‹ Invested $50 per week for each of the two models with N = 50. 
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But a Very High Variance! 
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‹ Colluders submit optimal portfolio of N = Emax ×Ncollude teams.

‹ Non-colluders submit optimal portfolio of N = Emax teams replicated
Ncollude times.

Expected P&L (USD) Probability of Loss
Ncollude NC C Increase NC C Decrease

1 6,053 6,053 0% 0.49 0.49 0%
2 9,057 10,240 13% 0.49 0.47 4%
3 10,975 13,776 26% 0.49 0.46 6%
4 12,411 16,883 36% 0.49 0.46 7%
5 13,632 19,677 44% 0.49 0.45 8%

Total expected dollar P&L (over 17 weeks) and average weekly probability of loss

related to the top-heavy contests for both the non-colluding (“NC”) and colluding

(“C”) portfolios with Emax = 50 and Ncollude > {1, . . . ,5}.

Caveat: Actual value of collusion likely much smaller.

The Value of Collusion 
Consider following stylized model of collusion / non-collusion: 

30 
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Conclusions 

‹ Developed a new framework for DFS team selection. 

‹ Model opponent behaviour via Dirichlet regression. 

‹ Leveraged mean-variance theory from finance. 

‹ Results from parimutuel betting and submodular maximization motivate 
greedy algorithm for constructing portfolio of N entries. 

‹ Demonstrated value in real-world contests. 

‹ Can estimate value of insider trading and / or collusion. 
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Ongoing Research 
‹ Test on other sports (baseball, basketball, ice hockey) 

‹ Very high variance in NFL contests due to injuries, roster size, 
weather, etc. 

‹ Only 16 games per team so also high seasonal variance. 

‹ Actively update parameter estimates 
‹ Lots of news comes out just before games 

‹ Witnessed instances when reacting to such news would have been 
beneficial and possible. 

‹ Improved Monte-Carlo algorithms. 

‹ Heuristics for re-optimizing portfolios in event of late-breaking news. 

‹ What if the opponents are strategic too? 

- handle this to some extent via stacking copula. 
32 
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‹ Can use Monte-Carlo to simulate a sample of (δδδ,p,Wop) and hence a
sample of (δδδ,G(r)).

‹ So generate many samples and use them to estimate µG(r) , σ
2
G(r) , σσσδδδ,G(r) .

Problem: Generating Wop is expensive when O large.

Solution

‹ Wop only affects G(r) so much easier if we can sample G(r) directly.

‹ Since Go S (δδδ,p) IID for o = 1, . . . ,O order statistics theory implies

G(qO) S (δδδ,p)
p
� F −1

GS(δδδ,p) (q) as O �ª

‹ So just simulate (δδδ,p), then estimate CDF FGS(δδδ,p) to obtain (δδδ,p,G(r)).

Other improvements also used. e.g. splitting.

σσδδ

Monte-Carlo and Order Statistics 
Need to estimate µG(r) , σG 

2 
(r) , σδ,G(r) for various algorithms. 
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