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Motivation

Daily fantasy sports (DFS) a multi-billion dollar industry

Millions of annual users

Approx $3.3 billion in entry fees in 2017 in U.S.

DraftKings and FanDuel represent approx 97% of U.S. market
FanDuel

Our Problem: How to construct a portfolio of teams for a DFS contest.
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e Athletes
¢ P real-world athletes (P ~ 100 to 500 in a given DFS contest).

o Athletes performance denoted by § € RY. (Uncertainty #1)

e Decision
e Choose a team w € {0,1}% of athletes.

e w ¢ W must satisfy budget, diversity, position constraints etc.
e Our points total: [':=w'§.

e Can submit up to N teams.

¢ Opponents
e O DFS opponents (O ~ 1 to 500,000).

o Opponents’ entries: W, := {w,}<.,. (Uncertainty #2)
* Opponents’ points total: G, :=w]d.
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Double-Up
e Top r% of teams each earn a payoff of R dollars.

e All other teams receive 0.

Top-Heavy
e Top few ranks win Ry, next few ranks win Ry < Ry, and so on.

e R; could be as high as $1m.
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Problem Formulations When N =1

Denote by G(") the " percentile of {G,}2.,.
e G is the stochastic benchmark we need to beat in double-up contest.

e Depends on both § and W,,.

Double-Up Formulation:

max P w'é > GM(W.,,,6)
weW ——

our fantasy points stochastic benchmark

Top-Heavy Formulation:

D
T (r3)
max ;Rdﬂ”{w 5> Gl (Wop,é)}

where the R 's are decreasing in d.
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Related Work & Contributions

Hunter, Vielma, Zaman (2016)

e Only consider winner-takes-all payoff structure.

e Propose a greedy MIP formulation to construct portfolio of teams
e Each team targeted to have a high mean and variance
e Teams designed to have low correlation
e Do not consider opponents behavior.
Our contributions

e Model exact payoff structure of contest.

Model DFS opponents behavior leading to Dirichlet regressions.

Connect to mean-variance theory on outperforming stochastic benchmarks.

Optimal mean / variance trade-off determined via sequence of binary
quadratic programs.

Portfolio constructed via greedy algorithm motivated by parimutuel betting.

Estimate value of insider trading and collusion. 8



Modeling Opponents



The Dirichlet Distribution

e A Dirichlet distribution Dir (cv, ..., ax) is a distribution on the
(K - 1)-dimensional simplex in R¥.

e So a draw from Dir (ay,...,ax) yields a probability vector in RX.

10



Alpha =[1, 1, 1] Alpha =[0.2,0.2, 0.2] Alpha = [5.0, 5.0, 5.0]

Six Dirichlet distributions on the 2-dimensional simplex.
Source: towardsdatascience.com


https://towardsdatascience.com
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Consider QB selection for DFS opponent’s team:

e QB k selected with unknown probability pgs for all k.

Brady: pgs Rodgers: pgg Stafford: pr Wentz: péB
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Positional Marginals & Dirichlet Regression

Consider QB selection for DFS opponent’s team:

e QB £ selected with unknown probability p’;B for all k.

Brady: pgs Rodgers: pgg Stafford: pr Wentz: péB

e QB positional marginal: py; ~ Dir ().
e Assume aqs = exp (XqeBqs) Where X a feature matrix
e [qs estimated via Dirichlet regression.

e Now easy to generate QBs for W, as Dirichlet-multinomial.

Other positional marginals obtained similarly so easy to simulate W, once
some copula chosen.

12



Dirichlet Regression Results
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Constructing Double-Up Portfolios

e Barring pathological cases, intuitively clear that optimal portfolio of NV
teams is to solve problem with a single entry and replicate N times.

e When N =1 the double-up problem

max P w's > G(W,,8)
weW ~—— N ,
our fantasy points stochastic benchmark

can be restated as
max P{Y, >0}

weW

where Yy, :=w'd — G(").

e Adopt a mean-variance approach to solve for w*
- follow Morton et al (2003) on outperforming a stochastic benchmark.
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Algorithm 1 For the Double-Up Problem with N =1

1:

if 3w e W with py,, >0 then
for all A€ A do

W) = argmax {uyw - )\J%W}
weW, py,, >0

end for

else
for all A € A do

W) = argmax {uyw + Aot }
weW v
end for

end if

. A" = argmax P{Y,, >0}
AeA

: return wy»

e Algorithm 1 requires solving a series of binary quadratic programs.

e Optimal if mean-variance assumption holds.
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Constructing Top-Heavy Portfolios

e Easy to adapt Algorithm 1 for top-heavy N =1 problem.
e But what to do for N > 17
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Constructing Top-Heavy Portfolios

e Easy to adapt Algorithm 1 for top-heavy N =1 problem.
e But what to do for N > 17

e Consider following idealized greedy algorithm.

Algorithm 2 Idealized Greedy Algorithm for Construction of Top-Heavy Portfolio
1: W=
2. foralli=1,...,N do

3:  w =argmax Reward(W* uw)
weW

W*=W~*u{w}}

5: end for

>

6: return W*
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Support for ldealized Greedy Algorithm

1. Consider parimutuel betting - a specialized case of a DFS contest where:

Team (horse) budget = $1
Every player costs $1

Exactly one player per team.

We know probabilities and opponents bets.
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Support for ldealized Greedy Algorithm

1. Consider parimutuel betting - a specialized case of a DFS contest where:

Team (horse) budget = $1
Every player costs $1

Exactly one player per team.

e We know probabilities and opponents bets.

Can show greedy algorithm optimal in this setting.

2. Top-heavy objective is monotone submodular
e By Nembhauser et al. (1978) portfolio returned by greedy algorithm
achieves > 63% of true unknown optimal portfolio.

Problem: Cannot find w; when i > 1.

19



Some Observations for General DFS Contest
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Some Observations for General DFS Contest

e Still want to go “long” mean and variance.
e But also don't want teams in portfolio competing with each other.

e Easy to see in winner-takes-all setting:
e Suppose O “small” relative to number of feasible teams.

e Why replicate an entry when chances are no-one else has picked it?

e Why even pick a “nearby”, i.e. highly correlated, entry?

Conclusion: Want to choose a diversified portfolio of teams where each team's
fantasy points score has high mean and variance.
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Algorithm 3 Top-Heavy Optimization for N Entries
1. Wr=g

2. foralli=1,...,N do
3: forall Ae A do

4: W) = argmax {uyw + Aol }
weW v
5:  end for
6:  A* =argmax Reward(W* uw))
AeA
7. W= W U {wye)
8 W=Wn{w:w'w<~} % diversification constraint for next entry

9: end for

10: return W~




Numerical Results
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Results

Participated at FanDuel during the 2017-18 NFL season.
Main focus on top-heavy for experiments.
Benchmark model similar to Hunter, Vielma, and Zaman (2016).

Invested $50 per week for each of the two models with N = 50.

23



ROI of Over 350% in Just 17 Weeks!

T R ————
—e— Strategic
400
300
200

100

Cumulative P&L (USD)

-100

123456 7 8 91011121314151617
Week

Cumulative realized dollar P&Ls in top-heavy contests during 2017 NFL season with N = 50
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But a Very High Variance!

15000
—F strategic (+ sd)
——Benchmark (+ sd)

10000 f 1

5000 f T |-

Cumulative P&L (USD)
\

OFTTITIIItL *

-5000
123456 7 8 91011121314151617
Week

Predicted and realized cumulative P&L for the strategic and benchmark models for all
seventeen weeks of the FanDuel DFS contests in the 2017 NFL regular season.
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The Value of Insider Trading and Collusion
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The Value of Insider Trading
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Weekly expected P&L for the strategic model (N = 50) with and without inside information p
in the top-heavy series. 28
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The Value of Collusion

Consider following stylized model of collusion / non-collusion:
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The Value of Collusion

Consider following stylized model of collusion / non-collusion:
e Colluders submit optimal portfolio of N = Enax x Neollude t€ams.

e Non-colluders submit optimal portfolio of N = F,,.x teams replicated
Ncollude times.

Expected P&L (USD) Probability of Loss
Neollude NC C Increase | NC C Decrease
1 6,063 6,053 0% 0.49 0.49 0%

9,057 10,240 13% 0.49 0.47 4%
10,975 13,776 26% 0.49 0.46 6%
12,411 16,883 36% 0.49 0.46 7%
13,632 19,677 44% 0.49 0.45 8%

Tt W N

Total expected dollar P&L (over 17 weeks) and average weekly probability of loss
related to the top-heavy contests for both the non-colluding (“NC") and colluding
(“C") portfolios with Emax = 50 and Negjiude € {1,...,5}.

30



The Value of Collusion

Consider following stylized model of collusion / non-collusion:

e Colluders submit optimal portfolio of N = Enax x Neollude t€ams.

e Non-colluders submit optimal portfolio of N = F,,.x teams replicated
Ncollude times.

Expected P&L (USD) Probability of Loss
Neollude NC C Increase | NC C Decrease
1 6,063 6,053 0% 0.49 0.49 0%

9,057 10,240 13% 0.49 0.47 4%
10,975 13,776 26% 0.49 0.46 6%
12,411 16,883 36% 0.49 0.46 7%
13,632 19,677 44% 0.49 0.45 8%

Tt W N

Total expected dollar P&L (over 17 weeks) and average weekly probability of loss
related to the top-heavy contests for both the non-colluding (“NC") and colluding
(“C") portfolios with Emax = 50 and Negjiude € {1,...,5}.

Caveat: Actual value of collusion likely much smaller.



Conclusions

Developed a new framework for DFS team selection.
Model opponent behaviour via Dirichlet regression.
Leveraged mean-variance theory from finance.

Results from parimutuel betting and submodular maximization motivate
greedy algorithm for constructing portfolio of IV entries.

Demonstrated value in real-world contests.

Can estimate value of insider trading and / or collusion.
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Ongoing Research

Test on other sports (baseball, basketball, ice hockey)

e Very high variance in NFL contests due to injuries, roster size,
weather, etc.

e Only 16 games per team so also high seasonal variance.

Actively update parameter estimates
e Lots of news comes out just before games

e Witnessed instances when reacting to such news would have been
beneficial and possible.

Improved Monte-Carlo algorithms.
Heuristics for re-optimizing portfolios in event of late-breaking news.

What if the opponents are strategic too?
- handle this to some extent via stacking copula.
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QB Matthew Stafford
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RB Alex Collins

CIN 31 @ BAL 27
FINAL
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SALARY

RB Dion Lewis

NYJ& @ NE 26
FINAL
$7.200

SALARY

WR JuJu Smith-Schuster
CLE24 @ PIT 28

WR Marvin Jones Jr.
GB 1 @ DET 35

SALARY

WR Keenan Allen
OAK10 @ LAC 30

TE Jack Daoyle

HOU 13 @ IND 22
FINAL
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Monte-Carlo and Order Statistics

2

Need to estimate pge, s

() Og,cm for various algorithms.

e Can use Monte-Carlo to simulate a sample of (§, p, W,,) and hence a
sample of (8, G(M).

e So generate many samples and use them to estimate g, aém, O5.G0-

Problem: Generating W, is expensive when O large.

Solution

o W, only affects G(") so much easier if we can sample G(") directly.

e Since G, | (6, p) 1ID for o=1,...,0 order statistics theory implies
P e
e So just simulate (4, p), then estimate CDF F (5 ) to obtain (6,p,GM).

Other improvements also used. e.g. splitting. -
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